RankFeed - Recommendation as Searching without Queries: New Hybrid Method of Recommendation

نویسنده

  • Maciej Kiewra
چکیده

The paper describes RankFeed a new adaptive method of recommendation that benefits from similarities between searching and recommendation. Concepts such as: the initial ranking, the positive and negative feedback widely used in searching are applied to recommendation in order to enhance its coverage, maintaining high accuracy. There are four principal factors that determine the method’s behaviour: the quality document ranking, navigation patterns, textual similarity and the list of recommended pages that have been ignored during the navigation. In the evaluation part, the local site’s behaviour of the RankFeed ranking is contrasted with PageRank. Additionally, recommendation behaviour of RankFeed versus other classical approaches is evaluated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Hashtag Recommendation in Social Networking and Microblogging Platforms Using a Knowledge-Intensive Content-based Approach

In social networking/microblogging environments, #tag is often used for categorizing messages and marking their key points. Also, since some social networks such as twitter apply restrictions on the number of characters in messages, #tags can serve as a useful tool for helping users express their messages. In this paper, a new knowledge-intensive content-based #tag recommendation system is intr...

متن کامل

Entity Based Query Recommendation for Long-Tail Queries

Query recommendation, which suggests related queries to search engine users, has attracted a lot of attention in recent years. Most of the existing solutions, which perform analysis of users’ search history (or query logs), are often insufficient for long-tail queries that rarely appear in query logs. To handle such queries, we study the use of entities found in queries to provide recommendatio...

متن کامل

Design and evaluation of a multi-recommendation system for local code search

Searching for relevant code in the local code base is a common activity during software maintenance. However, previous research indicates that 88% of manually-composed search queries retrieve no relevant results. One reason that many searches fail is existing search tools’ dependence on string matching algorithms, which cannot find semantically-related code. To solve this problem by helping dev...

متن کامل

Generating Recommendation Evidence Using Translation Model

Entity recommendation, providing entity suggestions relevant to the query that a user is searching for, has become a key feature of today’s web search engine. Despite the fact that related entities are relevant to users’ search queries, sometimes users cannot easily understand the recommended entities without evidences. This paper proposes a statistical model consisting of four sub-models to ge...

متن کامل

Use of Semantic Similarity and Web Usage Mining to Alleviate the Drawbacks of User-Based Collaborative Filtering Recommender Systems

  One of the most famous methods for recommendation is user-based Collaborative Filtering (CF). This system compares active user’s items rating with historical rating records of other users to find similar users and recommending items which seems interesting to these similar users and have not been rated by the active user. As a way of computing recommendations, the ultimate goal of the user-ba...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. UCS

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2005